
WHITE PAPER

Developer Guide to the
2023 OWASP Top 10
for API Security

Developer Guide to the 2023 OWASP Top 10 for API Security 2/23

Contents

API security cheat sheet 5

Definitions 5

API1:2023—Broken Object Level Authorization 7

API2:2023—Broken Authentication 8

API3:2023—Broken Object Property Level Authorization 9

API4:2023—Unrestricted Resource Consumption 11

API5:2023—Broken Function Level Authorization 13

API6:2023—Unrestricted Access to Sensitive Business Flows 14

API7:2023—Server Side Request Forgery 16

API8:2023—Security Misconfiguration 18

API9:2023—Improper Inventory Management 19

API10:2023—Unsafe Consumption of APIs 21

The API Security Top-10 is not sufficient! 23

Conclusion 23

Developer Guide to the 2023 OWASP Top 10 for API Security 3/23

As companies have adopted cloud-native infrastructure and
DevOp-style methodologies, web application programming
interfaces, or APIs, have proliferated. Some of the most
popular public APIs include those that allow developers
to access Google Search, scrape data from TikTok, track
vehicles, gather sports scores, and collect data on image
downloads from popular sites.1 In 2023, API-related traffic
accounts for 58 percent of all dynamic—defined as non-
cacheable—traffic, up from 54 percent at the end of 2021.2
APIs have become the way for enterprise applications to communicate and
integrate with each other as well. Companies use about two-thirds of their
APIs (64%) to connect their applications to partners, while about half (51%) are
access points to microservices. Overall, more than three-quarters of firms use
an average of at least 25 APIs per application.3

The adoption of API-based application infrastructure should come as no
surprise: Companies that adopt APIs to attract third-party developers
and create ecosystems see increased growth. These “inverted firms”—so
called because they flip the traditional concepts of creating barriers around
technologies and allow open access to some capabilities and data—grew by
nearly 13 percent over two years, and 39 percent over 16 years, compared to
firms who did not adopt APIs, according to a 2022 paper by researchers at
Chapman University and Boston University.4

With the adoption of microservices, containerization, and APIs, however,
comes a variety of risks, such as insecure software components, poor business
logic, and flawed data security. Nine-in-ten organizations (92%) have suffered
at least one security incident related to insecure APIs.5 Large companies
typically have thousands of APIs and attacks on those systems account for
about 20 percent of security incidents, while smaller companies have hundreds
of APIs whose smaller attack surface accounts for five percent of security
incidents.6 Annual losses due to breaches caused by API vulnerabilities exceed
$40 billion globally, according to an estimate by Marsh McLennan.7

1 Arellano, Kelly. The Top 50 Most Popular APIs. RapidAPI Blog. RapidAPI. Web Page.
 16 March 2023.
2 Tremante, Michael, et al. Application Security Report: Q2 2023. Cloudflare Blog.
 Cloudflare. Blog post. 21 Aug 2023.
3 Marks, Melinda. Securing the API Attack Surface. Enterprise Strategy Group.
 Sponsored by Palo Alto Networks. PDF Report, p. 10. 23 May 2023.
4 Benzell, Seth G., et al. How APIs Create Growth by Inverting the Firm. Social Science
 Research Network. Research Paper. Revised: 30 Dec 2022.
5 Securing the API Attack Surface. Enterprise Strategy Group, p. 14.
6 Lemos, Robert. API Security Losses Total Billions, But It’s Complicated. Dark Reading.
 News Article. 30 June 2022.
7 Marsh McLennan. Quantifying the Cost of API Insecurity. Sponsored by Imperva.
 PDF Report. 22 June 2022.

https://rapidapi.com/blog/most-popular-api/
https://blog.cloudflare.com/application-security-report-q2-2023/
https://www.paloaltonetworks.com/resources/research/api-security-statistics-report
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3432591
https://www.darkreading.com/application-security/api-security-losses-billions-complicated
https://www.imperva.com/resources/reports/Imperva-Marsh-McLennan-Report-2022.pdf

Developer Guide to the 2023 OWASP Top 10 for API Security 4/23

The problem is so serious that the US National Security Agency teamed up
with the Australian Cyber Security Centre (ACSC) and the U.S. Cybersecurity
and Infrastructure Security Agency (CISA) to offer guidance on API security
issues, especially the most common, known as insecure direct object reference
(IDOR) vulnerabilities.8

Unsurprisingly, against this backdrop of burgeoning security concerns, the
Open Worldwide Application Security Project (OWASP) released an update
to its API Security Top-10 list. Refreshing its inaugural 2019 list, the 2023 API
Security Top-10 list highlights the ten most common and serious security
risks created when developing applications that expose or use APIs. Issues
such as Broken Object-Level Authorization, a superset that includes IDOR
vulnerabilities, remains the same from the prior list. Yet, new categories—or
reorganized categories—now highlight issues overlooked in the past, such as
Server-Side Request Forgery (API7:2023) and Unrestricted Access to Sensitive
Business Flows (API6:2023).

“By nature, APIs expose application logic and sensitive data such as Personally
Identifiable Information (PII) and because of this, APIs have increasingly
become a target for attackers,” the OWASP group stated in its announcement.9
“Without secure APIs, rapid innovation would be impossible.”

8 New Cybersecurity Advisory Warns About Web Application Vulnerabilities. National
 Security Agency. Press Release. 27 July 2023.
9 Open Worldwide Application Security Project. OWASP API Security Top 10: Forward.
 OWASP.org. Web Page. 3 July 2023.

The 2023 API Security
Top-10 list highlights
the ten most common
and serious security
risks created
when developing
applications that
expose or use APIs.

https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3473830/new-cybersecurity-advisory-warns-about-web-application-vulnerabilities/
https://owasp.org/API-Security/editions/2023/en/0x02-foreword/

Developer Guide to the 2023 OWASP Top 10 for API Security 5/23

API security cheat sheet

OWASP Top 10 category Cybersecurity solution

1. Broken Object Level Authorization SAST

2. Broken Authentication SAST, DAST

3. Broken Object Property Level Authorization SAST, DAST

4. Unrestricted Resource Consumption SAST, DAST, Secure API Manager

5. Broken Function Level Authorization SAST

6. Unrestricted Access to Sensitive Business Flows DAST

7. Server Side Request Forgery DAST

8. Security Misconfiguration SAST, DAST

9. Improper Inventory Management Secure API Manager

10. Unsafe Consumption of APIs SCA, SAST

Definitions
API Endpoint—The point of communication between two systems,
typically a URL of a container or server running a microservice. Using an
URL, an application or developer can request information from the server
or execute an action on the API server or microservice.

API-Related Traffic—Internet traffic that consists of an HTTP or HTTPS
request and has a response content of XML or JSON, indicating that data
is being passed to an application, usually through SOAP, WSDL, a REST
API, or gRPC (see below).

Dynamic Application Security Testing (DAST)—The process of analyzing
an application or API server by using the interface, whether the user
interface for an application, a web front end for a web application, or URLs
for API endpoints. At type of black-box testing, this approach evaluates an
application from the “outside in” by attacking an application in the same
way as an attacker, usually without knowledge of internal processes.

Static Application Security Testing (SAST)—An approach to application
security that scans the source, binary or byte code for recognized patterns
of errors or vulnerabilities. Sometimes referred to as white-box testing,
SAST uses an “inside-out” approach that identifies potential vulnerabilities
and errors that may, or may not, be exploitable by an external attacker.
Lightweight static tools can provide real-time feedback to developers in
their IDE.

Developer Guide to the 2023 OWASP Top 10 for API Security 6/23

SOAP/WSDL—An XML-based protocol for creating Web APIs. SOAP is the
protocol itself and WSDL (Web Service Definition Language) is the format
used to formally describe services. Due to the heavy overhead, this API
style has become unpopular for new developments.

REST—A Web API style that involves exchanging messages directly over
HTTP, using the semantics of HTTP URLs and verbs, without using an
additional “envelope”. The content is usually encoded as JSON, although in
some cases it is XML.

GraphQL—A query language designed to be used in APIs (with requests
and responses in JSON), together with server-side runtimes to execute
these queries. It allows clients to define the structure of data they need
and then receive this from the server in that format.

gRPC—An API protocol that is more high performant than REST. It uses
HTTP/2 and the performance advantages that offers over HTTP/1.1. The
format of the individual messages is usually binary and based on ProtoBuf,
again creating performance advantages over REST and SOAP.

2023 API Security Top 10 Analogous 2019 API Security Entry

API1:2023—Broken Object Level
Authorization

API1:2019—Broken Object Level
Authorization

API2:2023—Broken Authentication API2:2019—Broken User Authentication

API3:2023—Broken Object
Property Level Authorization

API3:2019—Excessive Data Exposure,
API6:2019—Mass Assignment

API4:2023—Unrestricted
Resource Consumption

API4:2019—Lack of Resources &
Rate Limiting

API5:2023—Broken Function
Level Authorization

API5:2019—Broken Function Level
Authorization

API6:2023—Unrestricted Access
to Sensitive Business Flows

API7:2023—Server Side
Request Forgery

API8:2023—Security Misconfiguration API7:2019—Security Misconfiguration

API9:2023—Improper
Inventory Management

API9:2019—Improper Assets Management

API10:2023—Unsafe
Consumption of APIs

API8:2019—Injection,
API10:2019—Insufficient Logging
& Monitoring

Source: https://owasp.org/API-Security/editions/2023/en/0x11-t10/
Source: https://owasp.org/API-Security/editions/2019/en/0x11-t10/

Broken Object Level
Authorization is a
widespread and easy-
to-exploit issue in web
applications because
API calls carry
state information.
Applications are
vulnerable if they
allow a user to take
actions by specifying
an identifier in an
API without checking
whether they have
authorization to take
those actions.

https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa8-security-misconfiguration/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2019/en/0x11-t10/

Developer Guide to the 2023 OWASP Top 10 for API Security 7/23

API1:2023—Broken Object Level Authorization

What is it?
APIs allow access to services and data using standardized web requests.
Companies expose their infrastructure and data to insecure direct access
when those assets are not well protected or when the authorization controls
are poorly implemented or absent. Broken Object Level Authorization—also
referred to as Insecure Direct Object Reference (IDOR)—can lead to a variety
of risks, from data disclosure to full account takeover.

What makes an application vulnerable?
This is a widespread and easy-to-exploit issue in web applications. Applications
are vulnerable if they allow a user to take actions by specifying an identifier in an
API without checking whether they have authorization to take those actions.

In an example detailed by OWASP, a platform for online stores could allow
access to shop data using a simple call:
/shops/{shopName}/revenue _ data.json

This is insecure because any user can replace the shopName with the name of
another user’s store, gaining access to data they should not have.

Attack examples
In 2021, a security researcher found that the web-application and back-end
servers that provided data to Peloton exercise bikes had several API endpoints
that allowed unauthenticated users to access private data. In February
2021, Peloton implemented a partial fix for the issue, limiting API access to
authenticated users, but still allowing those users to access any private data
for other members. A full fix came in May 2021.10

How to prevent it as a developer?
Developers prevent insecure access to objects by enforcing strict controls,
assigning unpredictable user identifiers to dissuade enumeration of accounts,
and checking object-level authorization for every function that accesses a data
source. Developers should encapsulate such checks, especially if based on
user input, to remove the possibility that inadvertent errors could undermine
security. Application-security and operations professionals should require
authorization checks for each request to backend data.

How can OpenText help?
OpenText™ Static Application Security Testing (SAST) and OpenText™ Dynamic
Application Security Testing (DAST) can detect a broad range of vulnerabilities
in the Insecure Direct Object Reference (IDOR) category. IDOR can include
vulnerabilities such as Directory Traversal, File Upload, and File Inclusion.
More generally, IDOR also includes classes of vulnerabilities where identifiers

10 Masters, Jan. Tour de Peloton: Exposed user data. Pen Test Partners Blog. Pen Test
 Partners. Web Page. 5 May 2021.

Developers and
application-security
teams also must
properly implement
capabilities to check
user identity through
authentication.

https://www.pentestpartners.com/security-blog/tour-de-peloton-exposed-user-data/

Developer Guide to the 2023 OWASP Top 10 for API Security 8/23

can be modified via URL, Body, or Header manipulation. The system will alert
developers to cases where the user can directly choose the primary key in the
API request for a database or storage container, a problem that often leads
to this class of vulnerabilities. The system will also warn when an expected
authorization check is missing.

API2:2023—Broken Authentication

What is it?
Authorization checks limit access to data based on specific roles or users,
but those limitations are not sufficient to protect systems, data, and services.
Developers and application-security teams also must properly implement
capabilities to check user identity through authentication. Despite the critical
nature of authentication, the components are often poorly implemented or
improperly used—the root causes of Broken User Authentication. Broken User
Authentication allows attackers the ability to assume other user’s identities
temporarily or permanently by exploiting insecure authentication tokens or
compromising implementation flaws.

What makes an application vulnerable?
This common and easy-to-exploit issue occurs because authentication is
a complex process that can be confusing and is, by definition, exposed to
the public. Developer mistakes and application misconfigurations can result
in a lack of necessary checks allowing attackers to avoid authentication.
Developers who fail to implement authentication for a particular endpoint
or allow weak authentication mechanism expose applications to a variety of
attacks, such as credential stuffing, token replay, or password sniffing.

Attack examples
Between February and June 2023, credential stuffing attacks targeted clothing
retailer Hot Topic, who notified its customers that an unknown number of
accounts had been compromised. The attackers—using credentials harvested
from unknown sources—were able to access sensitive personal data, such
as customers’ names, email addresses, order histories, phone numbers, and
months and days of birth.11

In February 2022, a misconfigured cloud storage bucket left 1 GB of
sensitive data from email marketing service Beetle Eye without password
protection or encryption. The data included contact information and tourism-
related information collected by various tourist agencies and US states.12
Misconfigured authentication mechanisms are considered a variant of the
Broken User Authentication category.

How to prevent it as a developer?

11 Toulas, Bill. Retail chain Hot Topic discloses wave of credential-stuffing attacks.
 BleepingComputer. News article. 1 Aug 2023.
12 Nair, Prajeet. Data of 7 Million People Exposed Via US Marketing Platform. Data
 Breach Today. ISMG Network. 11 Feb 2022.

Developers and
application-security
teams also must
properly implement
capabilities to check
user identity through
authentication.

https://www.bleepingcomputer.com/news/security/retail-chain-hot-topic-discloses-wave-of-credential-stuffing-attacks/
https://www.databreachtoday.com/data-7-million-people-exposed-via-us-marketing-platform-a-18502

Developer Guide to the 2023 OWASP Top 10 for API Security 9/23

Standardization is your friend for authentication. DevSecOps teams should
create one—or a limited number—of authentication methods for applications
and ensure that developers uniformly implement the mechanisms across
all microservices and APIs. Any authentication implementation should be
reviewed within the context of the OWASP Application Security Verification
Standard (ASVS), currently at version 4,13 to ensure the correctness of the
implementation and associated security controls. Any deviation from the
standard—especially any intentional exposure of unauthenticated endpoints—
should be evaluated by the security team and only allowed to satisfy a strong
business requirement.

How can OpenText help?
OAuth and JWT are two of the most common types of authentication used
to implement APIs, and OpenText Dynamic Application Security Testing has
checks for weak implementations of both standards in applications, as well
as misconfigurations and vulnerable patterns, such as CSRF and Session
Fixation, that come up in custom authentication implementations. Dynamic
Application Security Tool (DAST) scanning by OpenText is a great way to
detect authentication vulnerabilities, especially in an API.

OpenText Static Application Security Testing allows a wide range of checks
relating to poor authentication as well. The static analysis tool includes
detection for generic issues—such as credential leakage—as well as highly
API-specific problems like missing protection claims in JWT tokens, or claims
occurring in JWT headers.

API3:2023—Broken Object
Property Level Authorization

What is it?
Broken Object Property Level Authorization is a new category in the 2023
OWASP list that combines two categories from the previous list: Excessive
Data Exposure (API3:2019) and Mass Assignment (API6:2019). The issue is
caused by the lack of validation of a user’s authorization—or the improper
authorization of a user—at the object-property level. API endpoints should
validate that each user has authorization for every property that they are trying
to access or change. Exploiting the issue can lead to information exposure or
manipulation of data by unauthorized parties.

What makes an application vulnerable?
The common and easy-to-exploit issue occurs when a user may be authorized
to access some properties of a specific object, such as reserving a room in travel
application, but not others, such as the price of a room. When the user accesses
an object’s properties through an API, the application should check that the user:

• Should be able to gain access to the specific property of the object

13 OWASP Application Security Verification Standard. OWASP. GitHub page. Last
accessed: 17 November 2023.

Standardization
is your friend for
authentication.
DevSecOps teams
should create one—
or a limited number—
of authentication
methods for
applications
and ensure that
developers uniformly
implement the
mechanisms across
all microservices
and APIs.

https://github.com/OWASP/ASVS

Developer Guide to the 2023 OWASP Top 10 for API Security 10/23

(violations were previously known as Excessive Data Exposure), and/or

• Is allowed to change the specific property of the object (some applications
fail to check this because they use a framework to automatically map web
request parameters to object fields, a problem known as Mass Assignment).

In an OWASP example, an online video platform allows a user to change the
description of a video, even a blocked video, but should not allow the user to
modify the ‘blocked’ property.
PUT /api/video/update _ video

{

 “description”: “a funny video about cats”,

 “blocked”: false

}

Attack examples
In January 2022, a bug bounty program discovered a flaw in Twitter that
allowed a user to submit an email address or phone number to Twitter’s
system, which would then return the account name to which the information
belonged.14 An unknown attacker used the flaw to compile a list of millions
of user accounts linked to phone numbers and email addresses. By allowing
anyone to link two properties, Twitter inadvertently allowed pseudonymous
users to be more specifically identified.

How to prevent it as a developer?
Developers should always implement proper controls on the ability to access
or change specific object properties. Rather than return a general data
structure with every property—which often happens with generic methods,
such as to_json() and to_string()—programmers should be very specific in
what information they return. As an extra measure of security, applications
should implement schema-based response validation that enforces security
controls on all data returned by API methods. Access should follow least
privilege principles, only allowing access if absolutely necessary.

How can OpenText help?
OpenText™ Static Application Security Testing helps to prevent both excessive
data exposure and mass assignment through data flow analysis. The system
will highlight many sources of private data, such as those based on variables
names or particular API calls, and identify objects that allow mass assignment.
Users may define sources of their own as well, tracking data through the
program, and if it ends up in an inappropriate place, alerting the developer or
operator of the risk.

14 An incident impacting some accounts and private information on Twitter. Twitter
 Privacy Center. Twitter. Web Page. 5 Aug 2022.

Broken Object Property
Level Authorization
is a new category
in the 2023 OWASP
list that combines
two categories
from the previous
list: Excessive Data
Exposure (API3:2019)
and Mass Assignment
(API6:2019).

OpenText™ Static
Application Security
Testing helps to
prevent both excessive
data exposure and
mass assignment
through data flow
analysis. The system
will highlight many
sources of private
data, such as those
based on variables
names or particular
API calls, and identify
objects that allow
mass assignment.

https://privacy.twitter.com/en/blog/2022/an-issue-affecting-some-anonymous-accounts

Developer Guide to the 2023 OWASP Top 10 for API Security 11/23

In addition, OpenText SAST has knowledge of the most important JSON
and XML serialization and deserialization mechanisms. Using this, the tool
can detect code that does not properly deserialize the domain transfer
objects (DTOs), which could allow mass assignment of its attributes. Some
cases of information exposure and mass assignment can also be detected
using OpenText Dynamic Application Security Testing. Finally, some
countermeasures can be implemented through adding rules to the web
application firewall (WAF).

API4:2023—Unrestricted Resource Consumption

What is it?
APIs expose many useful business functions. To do so, they use computing
resources like database servers or may have access to a physical component
through operational technology. Because systems have a finite set of
resources to respond to API calls, attackers can specially craft requests
to create scenarios that result in resource exhaustion, denial of service, or
increased business costs. In many cases, attackers can send API requests
that tie up significant resources, overwhelming the machine or bandwidth
resources and resulting in a denial-of-service attack. By sending repeated
requests from different IP addresses or cloud instances, attackers can bypass
defenses designed to detect suspicious spikes in usage.

What makes an application vulnerable?
API requests trigger responses. Whether those responses involve accessing
a database, performing I/O, running calculations, or (increasingly) generating
the output from a machine-learning model, APIs use computing, network, and
memory resources. An attacker can send API requests to an endpoint as part of
a denial-of-service (DoS) attack that, rather than overwhelm bandwidth—the
goal of a volumetric DoS attack—instead exhaust CPU, memory, and cloud
resources. Applications that do not limit the resources assigned to satisfy a
request can be vulnerable, including those that fail to restrict allocable memory,
number of files or processes accessed, or the allowed rate of requests, among
other attributes.

The server processing APIs needs to have limits in place to prevent excessive
allocation of memory and workloads, excessive requests for API-triggered
operations, or excessive charges for a third-party service without spending limits.

A common attack is to modify the arguments passed to the API endpoint, such
as increasing the size of the response and requesting millions of database
entries, rather than, say, the first ten:
/api/users?page=1&size=1000000

In addition, if the attacker can access a backend service that charges for
usage, resource consumption attacks can be used to run up charges for the
application owner. Another OWASP example points to a reset-password feature
that uses an SMS text message to verify identity and which could be called
thousands of times to increase expenses for the victim.

Applications that
do not limit the
resources assigned
to satisfy a request
can be vulnerable,
including those
that fail to restrict
allocable memory,
number of files or
processes accessed,
or the allowed rate of
requests, among
other attributes.

Developer Guide to the 2023 OWASP Top 10 for API Security 12/23

POST /sms/send _ reset _ pass _ code

Host: willyo.net

{

 “phone _ number”: “6501113434”

}

Attack examples
Since resource-consumption attacks are often lumped in with performance
and availability issues, targeted companies tend to treat them as part of
the cost of doing business, rather than incidents that need to be reported,
reducing visibility into the threat. In 2022, application-layer distributed-denial-
of-service (DDoS) attacks, a superset of API resource consumption attacks,
declined as a share of all attacks, but Q4 2022 still logged 79% more attacks
than the same quarter the previous year.15

In one attack outlined in 2015, a developer detected an Android client that
repeated contacted their site’s Web API with randomly generated API keys,
resulting in a denial-of-service attack. The developer hypothesized that a
malicious application installed on Android devices was attempting to guess the
64-bit API key.16

How to prevent it as a developer?
By using rate limits and threshold, most resources consumption attacks can be
blunted, although legitimate traffic could also be affected by poorly constructed
defenses. Specific limits should be set on:

• Memory allocation

• Processes

• Cloud instances

• Uploaded file descriptors and file size

• Records returned

• Number of paid transactions to third-party services

• All incoming parameters (e.g., string lengths, array lengths, etc.)

• Number of API interactions per client within a specific time window

Filtering at the edge of the network using content delivery networks (CDNs)
paired with web application firewalls (WAFs) can reduce traffic floods while
minimizing the impact to individual users. Application delivery platforms allow
easy filtering, including limits on memory, CPUs, and processes.

15 Yoachimik, Omer. Cloudflare DDoS threat report for 2022 Q4. Cloudflare Blog. Web
 Page. 10 Jan 2023.
16 How to stop hack/DOS attack on web API. StackOverflow. Web Page. 15 Sep 2015.

Filtering at the edge
of the network using
content delivery
networks (CDNs)
paired with web
application firewalls
(WAFs) can reduce
traffic floods while
minimizing the impact
to individual users.

https://blog.cloudflare.com/ddos-threat-report-2022-q4/
https://stackoverflow.com/questions/32575924/how-to-stop-hack-dos-attack-on-web-api

Developer Guide to the 2023 OWASP Top 10 for API Security 13/23

How can OpenText help?
With OpenText SAST and OpenText Dynamic Application Security Testing,
DevSecOps teams can test their code and infrastructure for resilience to
resource exhaustion attacks. OpenText SAST can spot many areas where
an attacker would be able to abuse the application logic to create extreme
resource consumption.

Code-level security is not sufficient to address this problem in the application.
Resource exhaustion and rate limiting are specific sub-segments of denial-
of-service attacks that should be mitigated at runtime. OpenText Dynamic
Application Security Testing can test servers and API functions for vulnerability
to denial-of-service attack without impacting the service. In addition, the very
act of running a DAST scan can stress test an environment enough to show
potential resource-consumption weaknesses.

API5:2023—Broken Function Level Authorization

What is it?
The modern application has many different functions that access, create,
manipulate, delete, and manage data. Not every application user needs
access to every function or all the data, nor should it be allowed under the
principle of least privilege. Every API endpoint has an intended audience
which may include anonymous, regular non-privileged, and privileged
users. Administrative and management functions should require privileged
authorization, but are sometimes accessible through legitimate API calls from
non-authorized user—the origin of Broken Function Level Authorization.
Because of the different hierarchies, groups, and roles create complexity in
access controls, applications functions may not have approriate restrictions on
who may call them.

What makes an application vulnerable?
Applications that allow specific functions to conduct administrative tasks may
not restrict access to those functions in a secure way. APIs that directly map to
such functions will expose those weaknesses to exploitation. Functions that do
not use the application’s authentication and authorization mechanism should
be considered potential security weaknesses.

In an example cited by OWASP, an attacker gains access to the API requests
for adding an invited user to a new mobile application, noting that the invite
includes information on the invitee’s role. Exploiting the weakness, the attacker
sends a new invite:
POST /api/invites/new

{

 “email”: “attacker@somehost.com”,

 “role”:”admin”

}

This allows them to gain administrative privileges on the system.

OpenText Dynamic
Application Security
Testing can test
servers and API
functions for
vulnerability to denial-
of-service attack
without impacting the
service. In addition,
the very act of
running a DAST scan
can stress test an
environment enough
to show potential
resource-consumption
weaknesses.

Developer Guide to the 2023 OWASP Top 10 for API Security 14/23

Attack examples
In 2022, the Texas Department of Insurance notified the public that information
of nearly two million Texans had been exposed through a part of the workers’
compensation application that inadvertently allowed members of the
public to access protected data.17 In a second incident in 2022, Australian
telecommunications firm Optus acknowledged that personal and account
information on as many as 10 million Australians had been exposed by an API
that did not require any authentication or authorization. While Optus called the
attack “sophisticated,” a security researcher familiar with the details of the
attack described it as “trivial.”18

How to prevent it as a developer?
DevSecOps teams should design a standard approach to authentication
and authorization that prevents access to requests by default, enforcing a
default of “deny all.” From this default, always apply the principle of least
privilege when determining access for roles/groups/users. Developers should
ensure that authentication and authorization are in place for all relevant HTTP
verbs/methods (e.g., POST, GET, PUT, PATCH, DELETE) related to each API
endpoint. Irrelevant verbs should be disallowed. In addition, developers should
implement a base class for administrative access and management, using
class inheritance to ensure that authorization controls check the user’s role
before granting access. All critical administrative functions should use the
authorization mechanism to prevent privilege escalation.

How can OpenText help?
By combining the static code and API analysis features of OpenText™ Static
Application Security Testing with the runtime checks of the OpenText Dynamic
Application Security Testing (DAST) suite, DevSecOps teams can evaluate their
application for broken function-level authorization issues and continuously test
production code for security weaknesses before deploying. To detect Broken
Object Function Authorization issues, OpenText™ Static Application Security
Testing uses rules specifying when an authorization check would be expected
in certain programming languages and frameworks, and the absence of such a
check is reported.

API6:2023—Unrestricted Access
to Sensitive Business Flows

What is it?
From sneakerbots to ticket bots, attacks on the inventory of online retailers
through their APIs has become a significant problem for e-commerce sites.
By understanding the business model and the application logic, an attacker
can create a series of API calls that can automatically reserve or purchase

17 Beeferman, Jason. Personal information of 1.8 million Texans with Department of
 Insurance claims was exposed for years, audit says. The Texas Tribune. 17 May 2022.
18 Taylor, Josh. Optus data breach: everything we know so far about what happened.
The Guardian. 28 Sep 2022.

DevSecOps teams
should design a
standard approach
to authorization and
authentication that
prevents access to
requests by default,
enforcing a default
of “deny all.”

Application control
and logic flows are
the heart of any online
businesses, and as
companies move more
of their operations
to the cloud, those
flows can be exposed
and exploited. This
excessive access may
harm the business.

https://www.texastribune.org/2022/05/16/texas-insurance-data-breach/
https://www.texastribune.org/2022/05/16/texas-insurance-data-breach/
https://www.theguardian.com/business/2022/sep/29/optus-data-breach-everything-we-know-so-far-about-what-happened

Developer Guide to the 2023 OWASP Top 10 for API Security 15/23

inventory, thus preventing other, legitimate consumers from gaining access to
the businesses’ products or services. Any API that allows access to a business
process can be used by an attacker to impact the business and falls under the
definition of Unrestricted Access to Sensitive Business Flows.

What makes an application vulnerable?
Application control and logic flows are the heart of any online businesses,
and as companies move more of their operations to the cloud, those flows
can be exposed and exploited. This excessive access may harm the business,
when attackers automate the purchase of products, create bots for leaving
comments and reviews, or automate the reservation of goods or services.

If an application offers an endpoint that has access to the company’s business
flow without limiting access to the business operations behind the endpoint,
then the application will be vulnerable. Protections include limiting the number
of access attempts from a single device through fingerprinting, detecting
whether the activity originates from a human actor, and detecting whether
automation is involved.

Attack examples
When Taylor Swift tickets went on sale on Ticketmaster in November 2022,
1.5 million customers had pre-registered, but more than 14 million requests—
including three times as much bot traffic—swamped the purchasing links
and APIs as soon as ticket sales opened. The site crashed, preventing many
customers from purchasing tickets.19

The onslaught of reseller bots resembled those that ruined the launch of the
PlayStation 5 in November 2020. Supply-chain issues had already limited supply
prior to the launch of the latest Sony gaming console, but the automated bots
made finding available units even harder and led to astronomical resale prices. In
one e-commerce site’s case, the number of “add to cart” transactions grew from
an average of 15,000 requests per hour to more than 27 million, using the store’s
API to directly request products by SKU number.20

How to prevent it as a developer?
Developers should work with both the business-operation and engineering
teams to address issues of potential malicious access to business-flows.
Business teams can identify which flows are exposed through APIs and conduct
threat analyses to determine how attackers could abuse those endpoints.
Meanwhile, developers should work with engineering operations as part of
a DevOps team to establish additional technical defensive measures, such
as using device fingerprinting to prevent automated browser instances from
overwhelming and identifying patterns in behavior that differentiate between
human and machine actors.

19 Steele, Billy. Ticketmaster knows it has a bot problem, but it wants Congress to fix it.
Engadget. News Article. 24 Jan 2023.

20 Muwandi, Tafara and Warburton, David. How Bots Ruined the PlayStation 5 Launch for
 Millions of Gamers. F5 Labs Blog. F5. Web Page. 18 March 2023.

Preventing
Unrestricted Access
to Sensitive Business
Flows is more about
a holistic approach to
application security
and less about finding
a specific technology.

https://www.engadget.com/ticketmaster-live-nation-senate-judiciary-hearing-195504179.html
https://www.f5.com/labs/articles/cisotociso/how-bots-ruined-the-playstation-5-launch-for-millions-of-gamers
https://www.f5.com/labs/articles/cisotociso/how-bots-ruined-the-playstation-5-launch-for-millions-of-gamers

Developer Guide to the 2023 OWASP Top 10 for API Security 16/23

Operations teams should also review any APIs designed to be used by other
machines, such as for B2B use cases, and ensure that some defenses are in
place to prevent attackers from exploiting machine-to-machine interactions.

How can OpenText help?
Catching vulnerable and sensitive business flows often relies on doing the
basics. Companies need to document and track all of their functioning APIs
and determine which ones expose sensitive processes and data to potential
attackers. Application logic also needs to be analyzed for logic flaws that could
be exploited by attackers.

Overall, preventing Unrestricted Access to Sensitive Business Flows is more
about a holistic approach to application security and less about finding a
specific technology.

API7:2023—Server Side Request Forgery

What is it?
Backend servers handle requests made through API endpoints. Server-Side
Request Forgery (SSRF) is a vulnerability that allows an attacker to induce a
server to send requests on their behalf and with the server’s level of privilege.
Often the attack uses the server to bridge the gap between the external
attacker and the internal network. Basic SSRF attacks result in a response
returned to the attacker, a far easier scenario than Blind SSRF attacks, where
no response is returned, leaving the attacker with no confirmation whether the
attack was successful.

What makes an application vulnerable?
Server-Side Request Forgery (SSRF) flaws essentially are a result of a lack
of validation of user-supplied input. Attackers are able to craft requests and
include a URI that supplies access to the targeted application.

Modern concepts in application development, such as webhooks and
standardized application frameworks, make SSRF more common and more
dangerous, according to OWASP.

In an example cited by OWASP, a social network that allows users to upload profile
pictures could be vulnerable to SSRF, if the server does not validate arguments
sent to the application. Rather than a URL pointing to an image, such as:
POST /api/profile/upload _ picture

{

 “picture _ url”: “http://example.com/profile _ pic.jpg”

}

An attacker could send a URI that could determine whether a specific port is
open using the following API call:
{

 “picture _ url”: “localhost:8080”

}

The most well-known
example of an SSRF
attack involved a
former Amazon Web
Services (AWS)
engineer who exploited
a misconfigured web
application firewall
(WAF) to then use an
SSRF flaw to gather
data from a server
instance belonging
to financial giant
Capital One.

Developer Guide to the 2023 OWASP Top 10 for API Security 17/23

Even in a Blind SSRF case, an attacker could figure out whether the port is open
by measuring the time it take to get a response.

Attack examples
The most well-known example of an SSRF attack involved a former Amazon
Web Services (AWS) engineer who exploited a misconfigured web application
firewall (WAF) to then use an SSRF flaw to gather data from a server instance
belonging to financial giant Capital One. The incident, which occurred in July
2019, resulted in data from approximately 100 million US citizens and six million
Canadian citizens being stolen.21 Amazon considers the misconfiguration
to be the source of the compromise, rather than the SSRF flaw.22

In October 2022, a cloud security firm notified Microsoft of four SSRF
vulnerabilities in the company’s flagship Azure cloud platform. Each
vulnerability affected a different Azure service, including the Azure Machine
Learning service and the Azure API Management service.23

How to prevent it as a developer?
Developers should encapsulate the resource-fetching mechanisms in their
code, isolating the feature and layering addition protections to verify any
requests. Because such features are typically used to fetch remote resources
and not internal ones, developers should configure the encapsulated features
to use a list of allowed remote resources and block attempts to access internal
resources. HTTP redirection should be disabled for the resource-fetching
functions and any requests parsed for malicious code.

The risk of SSRF weaknesses cannot always be completely eliminated,
so companies should closely considered the risk of using calls to external
resources.

How can OpenText help?
OpenText Dynamic Application Security Testing allows DevSecOps teams to
regularly test for Server-Side Request Forgery. OpenText™ Dynamic Application
Security Testing scans an application server in a configured environment so that
all components—application, server, and network—can be tested, giving the
dynamic analysis platform a comprehensive view of the impact of server requests.

OpenText SAST can detect many cases of SSRF through taint analysis—for
example, if the application uses unvalidated user input to construct a URL that
will then be fetched. The tool will flag the use of unrestricted user input.

21 Information on the Capital One cyber incident. Capitol One Advisory. Web Page.
Updated 22 Apr 2022.

22 Ng, Alfred. Amazon tells senators it isn’t to blame for Capital One breach. CNET News.
 com. News article. 21 Nov 2019.
23 Shitrit, Lidor Ben. How Orca Found Server-Side Request Forgery (SSRF) Vulnerabilities
 in Four Different Azure Services. Orca Security Blog. Web Page. 17 Jan 2023.

Security
Misconfiguration
includes setting up
applications with
vulnerable default
configurations,
allowing overly
permissive access to
sensitive functions
and data, and publicly
revealing application
information through
detailed error
messages.

https://www.capitalone.com/digital/facts2019/
https://www.cnet.com/tech/services-and-software/use-cnet-shopping-to-seek-out-the-best-deals/
https://orca.security/resources/blog/ssrf-vulnerabilities-in-four-azure-services/
https://orca.security/resources/blog/ssrf-vulnerabilities-in-four-azure-services/

Developer Guide to the 2023 OWASP Top 10 for API Security 18/23

API8:2023—Security Misconfiguration

What is it?
Developers often misconfigure their applications, failing to separate
development assets from production assets, exporting sensitive files—such
configuration files—to their public repositories, and failing to change default
configurations. Security Misconfiguration includes setting up applications
with vulnerable default configurations, allowing overly permissive access to
sensitive functions and data, and publicly revealing application information
through detailed error messages.

What makes an application vulnerable?
Default application configurations are often overly permissive, lacking security
hardening, and leaving cloud storage instances open to the public. Often, the
web frameworks on which applications are based include a host of application
features that are not needed and whose inclusion reduces security.

In an example detailed by OWASP, a social network that offers a direct-
messaging feature should protect users’ privacy, but offers an API request to
retrieve a specific conversation using the following example API request:
GET /dm/user _ updates.json?conversation _
id=1234567&cursor=GRlFp7LCUAAAA

The API endpoint does not restrict the data stored in the cache, resulting in private
conversations being cached by the web browser. Attackers could retrieve the
information from the browser, exposing the victim’s private messages.

Attack examples
In May 2021, a cloud security firm notified Microsoft that at least 47 different
customers had failed to change the default configuration of their instances of
Microsoft Power Apps. The affected organizations included companies, such
as American Airlines and Microsoft, and state government, such as those of
Indiana and Maryland, and exposed 38 million records to potential compromise
across the Power Apps portals.24

In 2022, a vulnerability management firm discovered that 12,000 cloud
instances hosted on Amazon Web Services and 10,500 hosted on
Azure continued to expose Telnet, a remote access protocol considered
“inappropriate for any internet-based usage today,” according to a 2022
report.25 The inclusion of unnecessary and insecure features undermines these
security of the APIs and applications.

24 Upguard Research. By Design: How Default Permissions on Microsoft Power Apps
Exposed Millions. Upgard Research Blog. Web Page. 23 Aug 2021.

25 Beardsley, Todd. 2022 Cloud Misconfigurations Report. Rapid7. PDF Report. p. 12. 20
 Apr 2022.

Security-as-code
can help, by making
configurations
repeatable and giving
application-security
teams the ability
to set standard
configuration sets for
specific application
components.

https://www.upguard.com/breaches/power-apps
https://www.upguard.com/breaches/power-apps
https://www.rapid7.com/blog/post/2022/04/20/2022-cloud-misconfigurations-report-a-quick-look-at-the-latest-cloud-security-breaches-and-attack-trends/

Developer Guide to the 2023 OWASP Top 10 for API Security 19/23

How to prevent it a a developer?
DevSecOps teams need to understand the steps necessary to create secure
configurations for their applications and use an automated development
pipeline to check configuration files before deployment, including regular unit
tests and runtime checks to continuously check the software for configuration
errors or security problems. Security-as-code can help, by making
configurations repeatable and giving application-security teams the ability to
set standard configuration sets for specific application components.

As part of their secure development lifecycle, developers and operations
teams should:

• Establish a hardening process that simplifies the repeatable creation and
maintainance of a secure application environment,

• Review and update all configurations across the API stack to incorporate the
new standard consistently, and

• Automate the assessment of the effectiveness of the configuration settings
across all environments.

How can OpenText help?
OpenText Static Application Security Testing can check configurations
during the development process and spot many types of weaknesses.
Because Security Misconfigurations occur at both the application-code level
and at the infrastructure level, different OpenText products can be used to
catch misconfigurations.

OpenText Static Application Security Testing scans can check application code
for misconfiguration issues. During the static analysis check, OpenText SAST
can evaluate configuration files for security errors, including those for Docker,
Kubernetes, Ansible, Amazon Web Services, CloudFormation, Terraform, and
Azure Resource Manager templates.

Configuration errors can also be caught during runtime. OpenText Dynamic
Application Security Testing allows DevSecOps teams to regularly test for
common security misconfigurations. One of the biggest strengths of DAST
scanning is that it runs on the application server in a configured environment,
which means that the full environment—application, server, and network—are
tested all at once, giving the dynamic analysis platform a comprehensive view
of the production environment is configured.

API9:2023—Improper Inventory Management

What is it?
Like most software assets, APIs have a lifecycle, with older versions replaced
by more secure and efficient APIs or, increasingly, using API connected to
third-party services. DevSecOps teams who do not maintain their API versions
and documentation can introduce vulnerabilities when older, flawed API
versions continue to be used—a weakness known as Improper Inventory
Management. Best practices for inventory management require the tracking of

A documentation
blindspot is when the
details of the API’s
purpose, functioning,
and versioning are
unclear because of a
lack of documentation
detailing these
important attributes.

Developer Guide to the 2023 OWASP Top 10 for API Security 20/23

API versions, the regular assessment and inventorying of integrated services,
and the regular deprecation of legacy versions to prevent the propagation of
security vulnerabilities.

What makes an application vulnerable?
Software architectures reliant on APIs—especially those using microservice
architectures—tend to expose more endpoints than traditional web
applications. The plethora of API endpoints, along with the likelihood of multiple
versions of an API existing at the same times, requires additional management
resources from the API provider to prevent an expanding attack surface.
OWASP identifies two major blindspots that DevSecOps teams may have
regarding their API infrastructure.

First, a documentation blindspot is when the details of the API’s purpose,
functioning, and versioning are unclear because of a lack of documentation
detailing these important attributes.

Second, a data-flow blindspot happens when APIs are used in ways that lack
clarity, resulting in capabilities that should not necessarily be allowed without
a strong business justification. Sharing sensitive data with a third party without
security guarantees, lacking visibility of the end result of a data flow, and failing
to map all data flows in chained APIs are all blindspots.

As an example, the OWASP report cites a fictional social network that allows
integration with third-party independent applications. While consent is required
from the end user, the social network does not maintain enough visibility into
the data flow to prevent downstream parties from accessing the data, such as
monitoring the activity of not just the user, but their friends.

Attack examples
In 2013 and 2014, as many as 300,000 people took an online psychological
quiz on the Facebook platform. The company behind the quiz, Cambridge
Analytica, not only collected information on those users, but their linked
friends as well—a population that totaled as many as 87 million people, the
vast majority of whom gave no permission to have their information collected.
The company then used the information to tailor ads and messaging to those
people on behalf of their clients, including sending political ads supporting the
Trump campaign in the 2016 election.26 Facebook’s lack of visibility into how
third parties used the information harvested from its platform is an example of
Improper Inventory Management.

How to prevent it as a developer?
DevSecOps teams should document all API hosts and focus on maintaining
visibility into the data flows between APIs and third-party services. The
primary way to prevent Improper Inventory Management is the detailed
documentation of the critical aspects of all API services and hosts, including
information on what data they handle, who has access to the hosts and data,

26 Rosenberg, Matthew and Dance, Gabriel. ‘You Are the Product’: Targeted by
 Cambridge Analytica on Facebook. The New York Times. News article. 8 April 2018.

https://www.nytimes.com/2018/04/08/us/facebook-users-data-harvested-cambridge-analytica.html
https://www.nytimes.com/2018/04/08/us/facebook-users-data-harvested-cambridge-analytica.html

Developer Guide to the 2023 OWASP Top 10 for API Security 21/23

and the specific API versions of each host. Technical details that should be
documented include the authentication implementation, error handling, rate
limiting defenses, the cross-origin resource sharing (CORS) policy, and details
of each endpoint.

The significant volume of documentation is difficult to manage manually, so
generating documentation through the continuous integration process and
using open standards is recommended. Access to API documentation should
also be limited to those developers who are authorized to use the API.

During the application building and testing phases, developers should avoid
using production data on development or staged versions of the application to
prevent data leaks. When new versions of APIs are released, the DevSecOps
team should do a risk analysis to determine the best approach to upgrading
applications to take advantage of increased security.

How can OpenText help?
Organizations can manage, monitor, secure, and document their API usage using
the OpenText™ Secure API Manager, which allows application-security teams to
maintain an up-to-date inventory of API assets. OpenText Secure API Manager
provides an authoritative repository where your DevSecOps team can store and
manage all of the APIs used by the organization, allowing an easy-to-manage
life cycle from API development to retirement. The software helps improve
compliance with regulations and licensing by allowing detailed analytics.

API10:2023—Unsafe Consumption of APIs

What is it?
With the increasing use of native cloud infrastructure to create applications,
APIs have become the point of integration between application components.
However, the security posture of third-party services accessed through APIs is
rarely clear, allowing attackers to determine on which services an application
relies and whether any of those services have security weaknesses.
Developers tend to trust the endpoints that their application interacts without
verifying the external or third-party APIs. This Unsafe Consumption of APIs
often leads to the application’s reliance on services that have weaker security
requirements or lack fundamental security hardening, such as input validation.

What makes an application vulnerable?
Developers tend to trust data received from third-party APIs more than user
input, although the two sources are essentially equivalent for a motivated
attacker. Because of this misplaced trust, developers essentially end up relying
on weaker security standards due to a lack of input validation and sanitization.

Unsafe Consumption of APIs may occur if the application:

• Uses or consumes other APIs using unencrypted communications,

• Fails to validate and sanitize data from other APIs or services,

• Allows redirection without any security checks, or

Organizations can
manage, monitor,
secure, and document
their API usage
using the OpenText
Secure API Manager
by OpenText, which
allows application-
security teams to
maintain an up-to-
date inventory of
API assets.

Developer Guide to the 2023 OWASP Top 10 for API Security 22/23

• Fails to limit resource consumption using thresholds and timeouts.

In an example from the OWASP report, an API that integrates with a third-party
service provider to store sensitive user medical information might send private
data through an API endpoint. Attackers could compromise the third-party API
host to respond to future requests with a 308 Permanent Redirect:
HTTP/1.1 308 Permanent Redirect

Location: https://attacker.com/

If the developer does not code security checks into their application to verify
any data returned by the API endpoint, their application will follow the redirect
and send sensitive medical information to the attacker.

Attack examples
In December 2021, a set of vulnerabilities in a commonly used open-source
software component, Log4J, allowed an attacker to provide unsanitized input,
such as an encoded script, and use vulnerable versions of Log4J to execute
the script on the server. The issue behind the Log4J vulnerability originated
in a lack of input validation, specifically the failure to conduct security checks
on deserialized user-supplied data. By sending serialized malicious code,
attackers could exploit the vulnerability and execute an attack on a server with
the vulnerability. Developers should check all input provided by third-party
APIs and other external sources.27

How to prevent it a a developer?
Developers should conduct due diligence when evaluating service providers,
assessing their API security posture and implementing strict security controls.
In addition, developers should confirm that all communications to third-
party APIs and from third parties to the organization’s APIs use a secure
communication channel to prevent snooping and replay attacks.

When receiving data from external users and machines, the inputs should
always be sanitized to prevent the inadvertent execution of code. Finally, for
cloud services integrated through APIs, allow lists should be used to lock the
address of the integrated solution, rather than blindly allowing any IP address
to call the application’s API.

How can OpenText help?
By combining the static code and API analysis features of OpenText Static
Application Security Testing with the runtime checks of the OpenText Dynamic
Application Security Testing (DAST) suite, DevSecOps teams can check their
application’s use of third-party APIs and test common attack types. To find
unsafe APIs, OpenText Secure API Manager can build a repository of all APIs
called by the system as well as which external applications can use your
application’s APIs.

27 Microsoft Threat Intelligence. Guidance for preventing, detecting, and hunting
 for exploitation of the Log4j 2 vulnerability. Microsoft. Web page. Updated: 10
 January 2022.

If the developer does
not code security
checks into their
application to verify
any data returned by
the API endpoint, their
application will follow
the redirect and send
sensitive medical
information to the
attacker.

The OWASP API
Security Top-10 is
crucial for cloud-native
developers building
APIs. Yet, addressing
common application
vulnerabilities like
SQL injection, data
exposure, and security
misconfiguration
should take priority,
as they are frequently
exploited by cyber
threats. The API
Security Top-10 is
an essential part
of secure software
development but
should be secondary
to addressing
general application
vulnerabilities.

https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/
https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

Copyright © 2025 Open Text • 04.25 | 262-000177-001

The API Security Top-10 is not sufficient!
For cloud-native developers specifically focused on creating APIs to
offer services to other parts of an application, internal users, or for
global consumption, the OWASP API Security Top 10 list is an important
document to read and understand.

However, the OWASP API Security Top 10 is not a standalone document.
Developers also need to make sure that they utilize other sources of best
practices, such as the OWASP Top 10, that are relevant to their current
application and architecture. Common application vulnerabilities -SQL
injection, data exposure, and security misconfiguration- continue to
be common ways that cyber threat groups can compromise corporate
infrastructure and should be remediated quickly. In addition, some
API-based applications, such as mobile apps, require different appsec
hardening steps than a stand-alone web-app, and different from what may
be required for connect and IoT devices. Overall, the API Security Top 10
list is important, but it remains only a facet of the overall secure software
development lifecycle. The list, and the OWASP Top 10 list, should be used
in conjunction with any other relevant standards and best practices that
are required for the solution under analysis.

Conclusion
As applications increasingly rely on cloud infrastructure, web application
programming interfaces (APIs) have become the foundation of the Internet.
Companies typically have hundreds, if not thousands, of API endpoints in
their environment, dramatically increasing their attack surface and exposing
applications to a variety of weaknesses.

The release of the 2023 OWASP API Security Top 10 list is a good starting
point for companies and developers to educate themselves on the risks of
API-based infrastructure and to assess their own applications. Along with the
more well-known Application Security Top-10 list, the pair of rankings can
help DevSecOps teams toward developing a holistic approach to the overall
security of their applications.

DevSecOps teams need to be aware of the security implications of APIs, how
to reduce an implementation’s vulnerabilities and security weaknesses, and
how to harden their development pipeline and the resulting API server to make
it more difficult for attackers to compromise an application through its APIs.

Where to go next

Here are the products
mentioned in this document:
OpenText Application
Security ›

OpenText Static Application
Security Testing ›

OpenText Dynamic Application
Security Testing ›

OpenText Secure API
Manager ›

Additional resources
OWASP Top 10 API Security
Risks—2023 ›

Gartner Magic Quadrant for
Application Security Testing ›

OpenText Application Security
Webinar Series ›

https://www.opentext.com/products/application-security
https://www.opentext.com/products/application-security
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-webinspect
https://www.opentext.com/products/fortify-webinspect
https://www.opentext.com/products/access-manager
https://www.opentext.com/products/access-manager
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://www.microfocus.com/en-us/assets/cyberres/magic-quadrant-for-application-security-testing
https://www.microfocus.com/en-us/assets/cyberres/magic-quadrant-for-application-security-testing
https://guides.opentext.com/webinar-central/cybersecurity
https://guides.opentext.com/webinar-central/cybersecurity

	API security cheat sheet
	Definitions
	API1:2023—Broken Object Level Authorization
	API2:2023—Broken Authentication
	API3:2023—Broken Object Property Level Authorization
	API4:2023—Unrestricted Resource Consumption
	API5:2023—Broken Function Level Authorization
	API6:2023—Unrestricted Access to Sensitive Business Flows
	API7:2023—Server Side Request Forgery
	API8:2023—Security Misconfiguration
	API9:2023—Improper Inventory Management
	API10:2023—Unsafe Consumption of APIs
	The API Security Top-10 is not sufficient!
	Conclusion

